
THERMAL REACTION OF VISCOELASTIC BODIES TO THERMAL IMPACT 

ON THE BASIS OF A NEW EQUATION OF DYNAMIC THERMOVISCOELASTICITY 

s 

E. M. Kartashov and I. V. Stomakhin UDC 539.2:621.375.8 

A dynamic thermoviscoelasticity equation is proposed for viscoelastic bodies 
described by the Maxwell model. New dynamic thermoviscoelasticity problems 
are examined that generalize known solutions of thermomechanics within the 
framework of classical Fourier phenomenology of heat propagation in solids. 

The urgency of problems of intensive thermal flux interaction with solid bodies has 
been elevated in recent decades in connection with the production of powerful emitters. The 
thermal action of a plasma flux, laser or electron beams is utilized in different processes 
of material treatment by concentrated energy fluxes. Conditions are produced for the jump- 
like change in the surface temperature of the solid body or the medium bounding it (the so- 
called thermal impact), that results in the appearance of powerful thermal stress waves in 
the bodies that is sufficient for crack formation. An urgent problem of estimating the role 
of temperature fields and thermoelastic waves in the mechanism of thermal fracture of solids 
occurs within the terminology of corresponding dynamic thermomechanics problems (classical 
[1-3] and generalized [4]). 

Many papers have appeared on this subject. The physical regularities of the thermal 
stress state have been studied in elastic bodies within the framework of classical Fourier 
phenomenology on heat propagation in solids (see the survey [5] where systematic classifica- 
tion of publications from the first up to 1987 is given). Analogous studies have been per- 
formed in more complex cases of generalized thermomechanics [4, 6] with the A. V. Lykov hy- 
pothesis of the finite rate of heat propagation [7] taken into account in anisotropic and 
isotropic bodies, within the framework of the linearized theory of thermoelasticity with 
thermal memory take into account [8], within the terminology of generalized magnetothermo- 
elasticity [9-11]. The thermelastic state of an isotropic body is investigated most com- 
pletely. For this case we present the governing relationships and we obtain the fundamental 
equation of dynamic thermoelasticity in stresses in general form. 

Let ~ be a finite or partially bounded domain of variation of the space variables (x, 
y~ z), respectively, of the body geometry and dimension in which the thermoelasticity process 
is studied, let S be the boundary of the domain that can be considered a piecewise smooth 
surface, and T o the body temperature in the initial unstrained and unstressed state (there 
are no external forces). The domain ~ will be deformed because of the action of thermal 
sources and external heating (or cooling), and its temperature T(x, y, z, t) = T(M, t) will 
vary. Displacements U(M, t) = {Ux(M, T), Uy(M, t), Uz(M, t)}, strains Sik(M, t), and 
stresses aik(M, t) (i, k = x, y, z) will occur in the body. 

The thermoelastic state of the elastic body is described by a system of equations (in 
the subscript notation) into which there will enter [i, 2] 

the equilibrium equations 

o~,~,h(M, t)= pU~(M, t), M 6 ~ ,  t>O, (1) 

the geometric equations 

~(M, t)=~--f- Ui,,~(M, t )+U~, i (M,  t) , M ~ Y ) ,  t>O, (2) 

the physical equations (Hooke's law) 
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+ {kemp(M, l ) - - (3~-{-2~)czr[T(M,  t ) - -  To]} 6~, MEY), t > 0 ,  (3) 

the compatibility equations 

~ p , ~ q ~ , ~ , ~  (M, t) = 0, ( 4 )  

where ~prm is an antisymmetric tensor of third rank, and 6ik is the Kronecker delta. 

The relationships (1)-(4) result in the following general equation of dynamic thermo- 
elasticity in stresses (in coordinate form) 

Oz~ (M, t) [ 0iT (M, t) 
( 1 q- v) Aoih (M, t) --[- OiOk ~ e~rE OiOk -Jr- 

+ 1 - [ - v  AT(M, t)6~h]-- ( l + v )  9 0z [2aih(M, t ) - -  
1 - - v  2G Ot2 L 

v %(M, t) 8~h+ 2G(2+v)  6 ! 1 - - v  2 1 - - v  ~ r (T (M,  O- -To)  ,h j ,  M E Y ) ,  t>0,  

( 5 )  

where o E = Oxx + Oyy + Ozz is the sum of normal stresses, related to volume expansion e = 
exx + eyy + ezz by the relationship 

1- -2v  
--  - -  a~ (M, t) ~- 3~ r [T (M, t) - -  To], M E ~9, t > 0. ( 6 )  e (M, t) E 

Equat ion  (5)  i s  i n v e s t i g a t e d  in g r e a t e s t  d e t a i l  in an examina t ion  of  an e l a s t i c  h a l f - s p a c e  
z > R of  the  t e m p e r a t u r e  T(z,  t ) .  The s t r e s s e s  o c c u r r i n g  he re  w i l l  depend only  on z and 
t ,  i . e . ,  Oik = Oik(Z, t )  and the  d i s p l a c e m e n t s  U x = Uy = 0, U z = Uz(z,  t ) .  For t h i s  case  
(5) yields 

aza~ 1 OZ%~ 1 § ~ OiT (z, t) 
- - - - - - a T p  , z > R ,  t > 0 ,  (7) 

Oz 2 vp Ot 2 1 - -  v Ot ~ 

where v = V2G(1 - v ) / p ( 1  - 2v) = 4(k + 2~) /p  i s  t he  sound speed in the  m a t e r i a l  of  the  e l a s -  P 
t i c  domain. 

Dan i lovskaya  [12] f i r s t  o b t a i n e d  (7) from r e l a t i o n s h i p s  ( 1 ) - ( 3 )  and somewhat l a t e r  Mura 
[13] (who a p p a r e n t l y  d id  no t  know about  t he  e a r l i e r  and more gene ra l  paper  [12])  d id  a l s o  
i n dependen t l y .  The s o l u t i o n  of  (7) under thermal  and t e m p e r a t u r e  h e a t i n g  c o n d i t i o n s  as we l l  
as of  h e a t i n g  by a medium showed t h a t  t he  p r o c e s s  of  s t r e s s  p r o p a g a t i o n  i s  not  p u r e l y  d i f -  
f u s i o n a r y  bu t  i s  a s s o c i a t e d  wi th  e l a s t i c  wave p r o p a g a t i o n  [5] .  

We now pose  the  problem: Find a r e l a t i o n s h i p  ana logous  to  (7) f o r  a v i s c o e l a s t i c  ma- 
t e r i a l  and examine a p p r o p r i a t e  dynamic t h e r m o v i s c o e l a s t i c i t y  problems.  

To f o r m u l a t e  the  r h e o l o g i c a l  laws connec t ing  the  s t r e s s  and s t r a i n ,  we i n t r o d u c e  the  
s t r e s s  Sik(M , t )  and s t r a i n  eik(M , t )  d e v i a t o r s  by us ing  the  r e l a t i o n s h i p s  [14] 

S~k (M, t) = o~k (M, t) - -  ~ (M, t) 6~k, ( 8 )  

ez.(M, t)=s~h(M, t ) - - s ( M ,  t)8~h, (9)  

where o and e are the mean normal stress and mean elongation: 

o(M, t ) =  31 ~azz(M,  t); e(M, l ) =  31 --~eii(M,i t). (10)  

The relationship (6) in deviator form is 

1 -- 2v 
~(M, t ) - -  - -  a(M, t ) + a T [ T ( M ,  0--To].  (11) 

E 

It remains valid even for viscoelastic bodies [14], which means that under hydrostatic com- 
pression or tension the body will behave as fully elastic. 
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Within the framework of a Maxwell medium, the dependence between the stress and strain 
for a viscoelastic body in deviator form will be 

OSi~ (M, t) 1 
Ot + xo S ~ ( M ,  t ) = 2 G  Oe~h(M,ot t) ,  M E ~ ,  t > O ,  ( 1 2 )  

where the constant ~p is the relaxation time of the medium: ~p = q/G. 

Let us utilize relationships (i), (2), and (12) to derive the equation of dynamic thermo- 
viscoelasticity. As above, we consider a viscoelastic half-space z > R of temperature T(z, 
t). Here U x = Uy = 0; exx = eyy = 0; ezz = (2/3)ezz(X, t). Furthermore, we have 

S~z(z, t )=g=z(z ,  t ) - - o ( z ,  V~, (13) 

(r (z, t) = E ~,~ (z, t) E % [T (z, t) - -  Tol, ( 1 4 )  
3 (1 - -  2~) 1 - -  2v 

a s ~  + ~ s=, - 46 aez,(Z, t) t > o, s , , ( z ,  t)l~= o = o, ( 1 5 )  
Ot "% 3 at ' 

Oa,~ O2U~ z > R, t > O, 
a---~ = o at---y-, 

from which 

O~a~, O 2 ( OU~ ) 02e'~ z > R ,  t > 0 .  
--  9 -0 -~  k az = 9 - - - ~ ,  (16) 

we f ind  Szz from (15) and l a t e r  e l iminate Szz by using (13) and (14) and express ~zz in terms 
of Ozz, and by substituting the expression found for ezz into (16), we arrive at the desired 
dynamic thermoviscoelasticity equation in the form 

m,m, 
p-lTp 

02(rz~ 1 O%Y~, 1 + v 02T 
2 - %0 ~ + Oz ~ Vp Ot z 1 - -  v 

_~_ l'nl 
2 Op'l~p 

t 
02 .t" exp [ - -  (m2/3xp) (t - -  r)l (r,~ (z, r) dx -]- 
Otz o 

a2 t 
Ot z .[ exp [ - -  ( m J 3 % )  ( t - -  x)] a r [T (z, x) - -  To] dr ,  z > R, t > 0. 

0 

(17) 

Here m I = 2(1 - 2~)/[3(i - v)] and m= = (i + v)/(l - ~). 

In the case of an elastic medium the relaxation time is �9 = - (~ = -), and (17) goes 
over into the Danilovskaya equation (7), therefore extending (~) to a viscoelastic body. 
The relationship (7) can be written in an even more compact form by going over to dimension- 
less variables 

z ' =  z/R; Fo = atlR2; ao = vpR/a; S = a T ( 3 L + 2 ~ )  = aTEl(1- -2v) ;  

4p. ; [52= 3 ; ~ + 2 ~  . 
Fo (r) = axp/R2; ~1 --  3 Fo (r) (;~ + 21~) 3 Fo (r) (;~ + 2~) ' 

;~ 2Gv E 
- -  - - . ;  Iz = G = ; az,z, (z', Fo) = (~z~ (z, t)/S (Te - -  To); 

1 - - 2 v  2(1 + v) ( 1 8 )  

T (z', Fo) = (T (z, t) - -  To)/(Te - -  To); tz~ o2g~ "z" 0zgz'~" OZT + 
Oz '~ 0 Fo 2 = 0 Fo - - - ~  

02 Fo 
+ ~1 0Fo-- ~ ! exp [ - -  [3~ (Fo - -  "0] [oz'~' (z', r)  + T (z', r)] dr, z' > 1, Fo i>  0. 

More general problems can be formulated for (18), including the simultaneous examination 
of elastic and viscoelastic media. The circle of problems occurring here is sufficiently 
extensive and also includes the problems: computation of the magnitudes of the stress jumps 
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on a thermoviscoelastic wave front in terms of external heating functions; estimation of 
the time of action of inertial effects within the framework of the model representations 
(15)-(18); the effect of a finite heat propagation rate; the effect of the influence of the 
motion velocity of the body boundary surface (z > R + vt, t > 0, v = const) on the magnitude 
of the thermoviscoelastic stresses; the effect of connectedness of the strain and temperature 
fields in the differential equation of heat conduction [5]; the effect of a finite heating 
rate of the boundary surface in a study of thermal impact under temperature heating conditions 
of the form [5] 

r (z, t)I~=~ = T~ - -  To It - -  ~ (t - -  to) (t - -  to)l, t > O, 
to 

where ~(z) is the Heaviside function, T s is the surface temperature, t o is the time to reach 
the boundary surface z = R of temperature Ts, as well as other questions whose solution with- 
in the framework of the phenomenological models for (18) is of great practical interest for 
the development of a theory of nonisothermal fracture. 

As an illustration of (18), we examine the thermal reaction of a viscoelastic half- 
space z > R (free from external loads) to a thermal impact produced by a medium of tempera- 
ture T c 

OT OZT ( 19 ) 
- , z ' > l ,  F o > 0 ;  

O Fo Oz '~ 
T(z', Fo)lFo=0 = 0, z' ]> 1; (20)  

OT(z',oz,, Fo)z '=l  = Bi[T(z', Fo)I~,=~-  1], F o > 0 ;  (21)  

[T(z', F o ) j <  co, z ' > l ,  (22)  

Here T(z', Fo) = [T(z, t) - T0]/(T c - To) and Bi = h/R. Hence, 

(re,z, (Z', FO)[Fo=0 -- O(rz'z" (Z', Fo) = 0, z > 1, 
O Fo Fo--0 

Crz'~' (- ' F~ I = a,,z, (z', Fo)lz,=~ = 0, Fo > 0. 

The function T(z', Fo) has the form [7, 15] 

(23)  

(24) 

T(z', F o ) = O * (  z ' - - I  ) / z ' - - I  ) 
2 -[/P-o - -  exp [Bi2Fo q- Bi (z' - -  1)] (D* / 2 1/F6 -k Bi -I/P~- , (25 

and in transform space [according to Laplace L(T) = T(z', p) = f0 ~ exp(-pFo)T(z', Fo)dFo] 

(z', p) = ! _ exp p(1 + Vp/Bi) [ - - ( z ' - -  i )  V ~ I .  ( 2 6  

Here ~*(x) = 1 -- ~(x); ~(x) = (2/v~-~) fo x exp (-ya)dy is the Laplace function. The opera- 
tional solution of (18) with the conditions (23) and (24) and with (26) taken into account 
has the form 

~z,z, (z', p) = P + ~1 + I~ 
[p - -  (~o - -  ~, - -  l~) p - -~s f i~ l  

(27 

{[ l_exp, 1 • exp - -  a------~" p p -+- ~: " 

Taking into account that expressions of the type (27) are characteristic for dynamic prob- 
lems of the form (18)-(24) and finding the original for the transform (27) represents de- 
finite technical difficulties, we clarify the procedure for going over to Oz,z,(Z' , Fo). 

First, we expand the preexponential factor into the sum of fractions 

1119 



9 
p + 13, + 13~. = , 9  A~ 

p2 _ (~z~ - -  [~1 - -  ~2) P - -  ~zolL ; ~  P - -  ' h  (28)  

where 

S0 - -  ~I - -  [J2 -If- (--- 1 / - 1  ] ' !  (Or 2 - -  ~1 - -  ~2) 2 @- 40~2~2 
~ i  = 2 ' 

A i -  Ti-[-lgl-i-[J2 , i =  1, 2. 
( --  1) z-, (~, - -  ?z) 

I t  f o l l o w s  f rom (29 )  t h a t  X~ > 0 and X2 < 0; m o r e o v e r ,  - ( $ 1  + 132) < X2 < - ~ 2 ;  A2 
0, A I + A 2 = i. Let us note that for an elastic medium (~i 
Cs 2' ~2 = O, A I = i, A 2 = O. 

Taking account of (29) we find 

(29)  

> O, A 2 < 
= ~2 = O) there follows Xl = 

L -1 ~D (p) = (1 -1- -Vp/Bi) [pZ _ (eft - -  f31 - -  ~2) P - -  or = 

<, Bi z 
[exp (7i Fo) - -  exp (Bi2Fo)(D* (Bi I/F-o) - -  

B i  z -  ~ 

Yi Fo 1 exp (--- yf~) d'~ 1 
Bi ] /a-  exp (?i Fo) J" - - ~  ] 

0 

The key question is finding the original for the transform 

(30) 

C z ' - - i  , ' /P-~l@'~2 1 (31) 
expL % P | /  p-t-13,~ J" 

Initially we find the original of the transform 

1 exp - -  p , (32)  
(P) = p So p + I~ 

by applying the contour displayed in Fig. 1 for the calculation of the Riemann-Mellin inte- 
%,+ i ~o 

g r a l  (1/2ai) i" exp ( p F o ) ~ ( p ) d p .  We f i n d  
~--' i ~o 

~o 

=~1 Fo 1 - - .  - - •  
So , ~ 0 x + ~  

( z ' - - I  1 / "  [~1-- x 
X exp [-- (x --k i32) Fo] sin - -  (x + ~2~ 

r X 

from which there follows 

t Z t -  1 Q (Fo), Fo > 

Q (Fo) = z' --- 1 
0, Fo < - -  

~o 

= Q (Fo) = 

d x ] .  (33) 

The function Q(Fo) allows a jump in going through the value Fo = (z' - i)/~0. 
of this jump equals 

IA[ = 

Fo~ 

lira Q(Fo) = lira Q(yq--- 
z'--! +0 y~0+ 
(7. o 

( z'--1 
~ ' - 1  =Q --+01= 

G6 0 CX 0 

(34) 

The magnitude 
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! LM 

~ '.., ~k:) - % i  

Fig. I. Contour for finding the orig- 
inal for the transform (32) by using 
the Riemann-~ellin integral. 

- -1  - ~ 1  ~ - - - - ~ 1  exp - - ( x ~ - ~ /  - -  • sin - - ( x - t - [ ~ 2 )  dx. (35)  
~ x + p~ ~o So 

Let us compute the same quantity IAI by using an operational approach. First, we note 
that an initial value theorem must be formulated for functions of the type (34) by taking 
account of its absence in known operational calculus handbooks [7, 16-18]. 

THEOREM (on t h e  i n i t i a l  v a l u e ) .  I f  H m Q  - t - - -  e x i s t s ,  t h e n  

( z l) (,I 
lira Q y q - - -  = lira pQ(p)exp pl, (36)  

where the variable p running through real values tends to +~. This property is conserved 
even in the case when p + ~ along a ray of the complex plane making an angle less than ~/2 
in absolute value with the positive real axis. 

Proof. We have 

from which 

(p) = ( exp(--pFo)Q (Fo) d Fo : 7 exp (-- p Fo) Q (Fo) d Fo : 

(z'-*'l),'ao 

C z'-I tS C z l ,  = e x p  . So p o e x p ( - - p y )  Q f ! + - - S o  }dy, 

= exp(--py)Q g+ dg. % (p) exp p 
~176 b ~ 

Going over to the variable u = py in the integral on the right, we obtain 

p(~ (p) exp - -  1 u - - p  = e x p ( - - u )  Q 
So p 

Passing to the limit as p § ~, we find 

lira pQ(p) exp p = Q 
p ~ ~ (Z 0 (Z 0 

R e l a t i o n s h i p s  (32)  and (37)  r e s u l t  in  

z ' - - I )  
@ ~  du. 

O~ o 

- - + 0 )  =IAI. (37) 

z'--] ) 
[A[ = lira pQ-(p) exp p = 

p ~  C(, 0 
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- - l i m e x p [  z ' - - I  ( V / = [ - - -  j 
- -  P - - P  P + 13~ +[3"] ] exp] [3, (z-- I) 
50 p + IL / J 250 " 

Comparing (35) and (38), we obtain the integral 

exp [ ~i (z ' - -  1) 
250 ] -- 

[ z ' - - '  ] 

o x+13~  50 x ) 

which is important for further manipulations and is also of independent interest. 
the desired original of the transform (31) 

We find 

(38) 

(39) 

[ ( L -~ exp 5 ~  p p+ig~ , j =  

= 8  Fo I--  
5o ) a ~ x + l ~  

- -  exp (-- (x -l- ~) Fo) • 

• sin - -  d x  + 
( Z  0 . , 

(40) 

+ r l  Fo 5o ~ exp(- - (x+[3~))•  

x s i n  --(x + ~2) dx 
�9 5 0  

F o  o 1 

from (33) by the rule of differentiating the original o~f(~)dT~ " f(p) where 6(z) is the Dirac 

delta function. Relationships (30), (39), and (40) obtained permit writing the original 
for Oz,z,(Z', Fo) for the transform (27). We find 

z ' - -  1 O, F o <  - -  
50 

o'.,., (z', Fo) = uz,.,-(1) (z', Fo) -+- z' - -  1 
_ ( 2 )  .~.~.(z', Fo), Fo> --, 

5 0  

O(1) /~r F o ) =  e~ I A~BiZ [ e x p ( B P F o +  Bi (z' --1)) (I)* ( z ' - I  
~'~" t~ , BP -- 7i [ 2 -I/Fo- + 

; ( z ' - -  17 
Fo eXD { 7ix 

) v q- Bi -I/F-o --  exp (71Fo) --  1 " 4T 
�9 2 V a  5 .~a/2 

Fo exp ( ,~i. c (Z'-- 1) ~ ' ) 

Bi "1/~ -I/~- d ,  ; 

,r "-' A,Bi~ { ( 13~(z'--1))[ ( ( , ,~ , tz ,  F o ) =  ~ exp exp V, Fo 
i~1 B P - -  "~'i . 2 5 o  , 

Z' -1 
F o - -  - -  

~o  

• ( 1 - -  Bi 7i_V~_, 6I exp (--71~)-[/~- d1:)-- 

- - e x p  Bi z Fo - -  q~* Bi Fo 
, 5 0  5 0  

dx-- 

z l)) 
50 

X 

(41) 
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, ~, (<_1 1/~x_x,) - -  - -  i' e x p  ( - -  ( x  q -  [52) F o )  s i n  - -  ( x  -t-  t3e) - -  X 
b o~ o x 

I ' !oxp[~,+~+,,,(vo <_1)1 ~ x x+~2+,? i  ao 
2 ' - - 1  

F o - - - -  
o~ 0 

Bi -I/~ b 1/~- exp (-- yix) dx -- 

z ' - - [  
F o - - - -  

gt o 

- -  1- -  BiWa-T' " '[0 ]/~- x+IL_-i 'Bi  z 

( [ i )l <_1) • exp (x+[5,2-~-Bi 2) Fo z ' - - I  e * ( B i  ~// Fo 
Cr 0 �9 r 

2" - -1  
F o - - - - -  

r o 

- -  1 - -  -I/---7- ~ 1/~- exp ((x + [3~) ,) dx dx . 

X 

(42) 

According to (29), for an elastic medium, Yl = a02, Ai = i, A 2 = 0, 
reaction of a solid under sudden heating by a medium is described by 
where 

and the thermoelastic 
relationships (41), 

O ( l )  ~, 1 
~,~, (~ , Fo) = exp (ao2Fo --  

2 (1 + %/Bi) 

z ' - -  1 

- -  exp(a~ Fo + 
2 (1 - -  % / B i )  

Bi 2 
- -  ., o e x p ( B ? F o +  

Z t -  1 

% (z' -- 1)) m* 2 VF6 

Bi (z'--I))cD* ( z ' - - i  
2 V% 

oc2,(z,~o> ~ ' F [ (  z,_ z,z,  -- o exp ~ F o - -  Bi 2 - -  a~ % 

_..(ooV~ ~,_i)) B i  F o  _ 

OC 0 , 

oo ~ )]**(~i 1/~o 

+ ao V%) - 

+ f3i V%) ; 

z'-1)]. % 

(43) 

(44) 

This result 

In the 
(41), where 

issues from (42) and agrees with that obtained in [5]. 

case of temperature heating in (21) (i/Bi = 0), the solution also has the form 

~z'z't~,(1) ~,, F o ) = ~  Ai(z'--2.1/~.l) exp(yiFo) ~ e x p  --?ix----4.c dx, 
i = I  D 

o 

: & exp ~(z'--1)2% ( z ' - - I  ']! 

I exp(.7, Fo) l~.* 1 [ z ' - - I  ) - - - -  j exp ( - -  (x q- t3~ + 3',) 

- -  exp (-- (x -+- [3~ + ~) Fo) sin - - a o  (x + ~) 1 x 

(45) 

(46) 
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6 z' z, 

-o,z 

-o,r 

-o,8 

a 

\ 
\ 

- t 0  0 , ,  , . . . . . . .  , , , , ~ , , 0,2 o,~ 0,6 o,~ l, oro o o,2 o,~ 

b 

i i i 

Fig. 2. Stress distribution with time in the section z' = 2 
for q = 5"10 3 Pa.sec (a) and in the section z' = 4 for q = 5- 
10 5 Pa'sec (b); solid line is for a viscoelastic medium and 
the dashes for an elastic medium. 

Let us analyze the results obtained. 

It follows from (41) that the stress component expressed by the function Oz,z,(1)(z ', 
Fo) is a diffusion wave that occurs at once at each interior point of the viscoelastic do- 
main; the stress component expressed by the function Oz,z,(2)(z ' , Fo) is a longitudinal 
wave whose front moves at the velocity s 0 within the viscoelastic half-space. A stress 
described by function Oz,z,(1)(z ', Fo) that grows from zero to a certain negative value 
occurs initially at an arbitrary interior point (z' Fo) of the domain. At the time Fo = 
(z' -- l)/s0, a wave described by the function Oz,z,12)(z ', Fo) arrives at this point and 
the stress Oz,z,(Z' , Fo) makes a jump by the quantity IAi = exp [-~1(z' - l)/2s0)] into 
the domain of positive (tensile) values or, by remaining in the domain of negative values 
after the jump, decreases rapidly (as in the first case) to zero. The magnitude of the 
stress jump on the wave front hence decreases with advancement into the depths of the visco- 
elastic domain. The distribution of the stress Oz,z,(Z', Fo) in the section z' = 2 is pre- 
sented in Fig. 2a for s 0 = 2.26, q = 5"103 Pa.sec, G = 3"I0 s Pa, v = 0.28, 61 = 1.9, ~2 = 
2.78, 71 = 3.99, and 72 = -3.56, computed for a viscoelastic medium (solid curve) by using 
(45) and (46) and for an elastic medium (dashes) by using (43) and (44). As is seen from 
the figure, short-range stresses whose magnitude differs essentially from the corresponding 
stresses for an elastic domain occur during sudden heating of the viscoelastic half-space 
boundary because of the action of inertia forces therein (in particular in the section z' = 
2). This indicates the closeness of the nature of the thermal reactions of elastic and 
viscoelastic media to thermal impact. However, the influence of viscosity of the medium 
(the influence of relaxation processes occurring in the medium) becomes noticeable at the 
time of expansion wave passage since a change occurs in the maximum compressive stress toward 
diminution at the time of the stress jump and at subsequent times. It is essential that 
for comparatively small values of the viscosity q the stress Oz, z, should not emerge beyond 
the negative-values limit, remaining compressive during its whole time of variation. As 
the viscosity of the medium increases, the mentioned difference diminishes and becomes in- 
essential, as the nature of the curves in Fig. 2b for q = 5"i05 Pa'sec, z' = 4 indicates 
(remain constant as in Fig. 2a). 

As is seen from (27) and (37) for the case of heating by a medium (Bi > 0), no discon- 
tinuities are observed and the stresses vary continuously: 

IAI = lira p ~  (p) exp p _ p = O. 

NOTATION 

p, mass of unit volume; I, p, isothermal Lame coefficients; ST, coefficient of thermal 
expansion; E, G, the elastic and shear moduli; v, the Poisson ratio; q, the viscosity coeffi- 
cient; Bi = hR, the Blot criterion; h, the relative coefficient of heat transfer; Fo = at/R 2, 
the Fourier criterion; ~, the thermal diffusivity of the material; L -I, the inverse opera- 
tor to the Laplace operator. 
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ELECTROCONVECTON AND HEAT EXCHANGE IN DISPERSED 

GAS-LIQUID SYSTEMS 

M. K. Bologa and F. M. Sazhin UDC 532(075.8) 

The problem of momentum, energy, and electrical charge transport is formulated 
for gas-liquid dispersed systems; electroconvection, heat liberation, and in- 
terphase heat exchange are considered, and practical applications of such 
studies in diffuser systems are described. 

Introduction. In a number of branches of industry, such as thermal energy production and chem- 
ical and food technology processes in which a gas interacts with a liquid are often used, and 
they are often carried out under bubbler conditions to intensify them. The main questions 
involved in study of such processes are the hydrodynamics of the gas-liquid layer, removal 
of the liquid phase, heat-mass transport and organization of various processes both in the 
bubble layer and the vapor-gas space. 

The action of electric fields can significantly intensify heat exchange in gas-liquid 
media. To a certain extent such questions have been investigated in bubble boiling [i]. 
It follows from data available in the literature on the problem of heat exchange in bubble- 

Applied Physics Institute, Academy of Sciences of the Moldavian SSR, Kishinev. Trans- 
lated from Inzhenerno-Fizicheskii Zhurnal, Vol. 59, No. 3, pp. 419-431, September, 1990. 
Original article submitted December 27, 1989. 

0022-0841/90/5903-11.25512.50 �9 1991 Plenum Publishing Corporation 1125 


